Two Algorithms for Computing Exact and Approximate Nash Equilibria in Bimatrix Games

نویسندگان

چکیده

In this paper, we first devise two algorithms to determine whether or not a bimatrix game has strategically equivalent zero-sum game. If so, propose an algorithm that computes the given is game, then approach compute whose saddle-point equilibrium can be mapped well-supported approximate Nash of original We conduct extensive numerical simulation establish efficacy algorithms.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New Algorithms for Approximate Nash Equilibria in Bimatrix Games

We consider the problem of computing additively approximate Nash equilibria in noncooperative two-player games. We provide a new polynomial time algorithm that achieves an approximation guarantee of 0.36392. We first provide a simpler algorithm, that achieves a 0.38197-approximation, which is exactly the same factor as the algorithm of Daskalakis, Mehta and Papadimitriou.This algorithm is then ...

متن کامل

Approximate Well-Supported Nash Equilibria in Symmetric Bimatrix Games

The ε-well-supported Nash equilibrium is a strong notion of approximation of a Nash equilibrium, where no player has an incentive greater than ε to deviate from any of the pure strategies that she uses in her mixed strategy. The smallest constant ε currently known for which there is a polynomial-time algorithm that computes an ε-well-supported Nash equilibrium in bimatrix games is slightly belo...

متن کامل

Polynomial Algorithms for Approximating Nash Equilibria of Bimatrix Games

We focus on the problem of computing an -Nash equilibrium of a bimatrix game, when is an absolute constant. We present a simple algorithm for computing a 3 4 -Nash equilibrium for any bimatrix game in strongly polynomial time and we next show how to extend this algorithm so as to obtain a (potentially stronger) parameterized approximation. Namely, we present an algorithm that computes a 2+λ 4 -...

متن کامل

Computing 1/3-approximate Nash equilibria of bimatrix games in polynomial time

In this paper we propose a methodology for determining approximate Nash equilibria of non-cooperative bimatrix games and, based on that, we provide a polynomial time algorithm that computes 1 3 + 1 p(n) -approximate equilibria , where p(n) is a polynomial controlled by our algorithm and proportional to its running time. The methodology is based on the formulation of an appropriate function of p...

متن کامل

Approximate and Well-supported Approximate Nash Equilibria of Random Bimatrix Games

We focus on the problem of computing approximate Nash equilibria and well-supported approximate Nash equilibria in random bimatrix games, where each player's payoffs are bounded and independent random variables, not necessarily identically distributed, but with common expectations. We show that the completely mixed uniform strategy profile, i.e. the combination of mixed strategies (one per play...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lecture Notes in Computer Science

سال: 2021

ISSN: ['1611-3349', '0302-9743']

DOI: https://doi.org/10.1007/978-3-030-90370-1_2